

CENTER FOR INTELLIGENT SYSTEMS, CONTROL, AND ROBOTICS

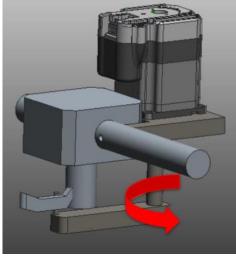
#### Team 10 GOLIATH Autonomous ATV

Michael Brazeau Omesh Dalchand Group Members: Marc Akbar Lester Kendrick Nahush Kulkarni

Jeremy Hammond Merrick Salisbury

Advisors:

Dr. Chiang Shih Dr. Oscar Chuy Dr. Kamal Amin Dr. Michael Frank Dr. Emmanuel Collins


*Instructor:* Dr. Kamal Amin



April 17, 2014

## Background/Needs

- CISCOR focuses on mobile robotic path-planning
- Requires a more robust autonomous off-road platform
  - All Terrain Vehicle
- Previous work included remote control of the ATV
  - Actuators installed
    - Gear shift
    - Throttle
    - Brake
    - Steering





### Objectives

- Integrate a sensory system that will scan the surrounding environment to perform simple autonomous navigation
  - Road following
  - Waypoint-to-waypoint
  - Low speed testing, no obstacle avoidance
  - Proof of Concept
- Will be used as a future research platform for CISCOR
- Requirements
  - Budget of 1500.00 USD
  - Project completion by end of April 2014
  - Retain human operation






#### **Overall Function**



#### **Overall Function**

- Created a system for communication
- Sensory inputs used for decision making
- Output commands to actuators

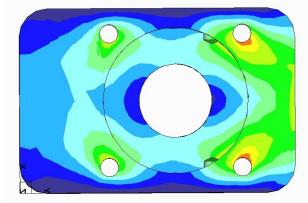




#### **Concept Selection**

- Decision matrix design parameters
  - Functionality
  - Simplicity (# of parts)
  - Ease of manufacture
  - Low cost
  - Low time to manufacture
  - Small amount of interference (parts/human)
  - Low susceptibility to damage (environment, impact, rust etc..)
  - Ease of data calculation
  - Ease of adjustment
  - Low energy consumption
  - Lightweight




### **Steering Motor**

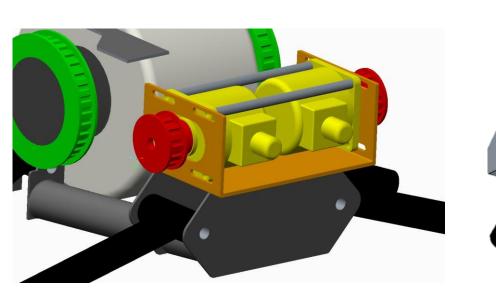
- Previous motor was underpowered
- New motor mounted in same location

Only one design needed

- Max motor torque 892
  Nm
  - Stall torque (worst case scenario)
  - Value used in FEA





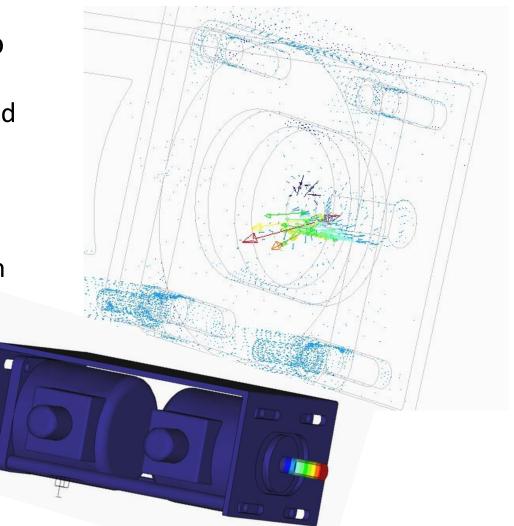

#### **Steering Motor Mount**

- 6061-T6 aluminum yield strength ≈ 240 Mpa
  Previous frame and new mount
- Max von mises stress ≈ 95 Mpa
- Stress concentrations located at bolt holes
- Factor of safety 2.55



#### Encoders

- Encoders output rotational position of wheels
   Four mounted on ATV sub frame
- Three separate mounting designs for front
- One possible location for the rear







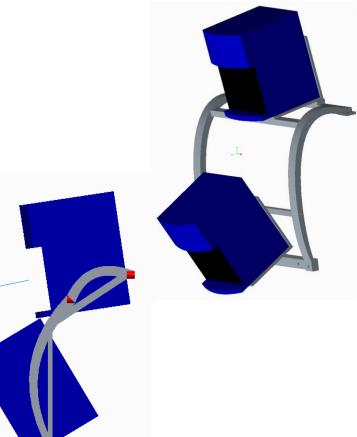

#### **Encoder Mounts**

- Applied 80 lbf radially to encoder shafts for FEA
  - Maximum allowable load rating
  - Shafts made from 303 stainless steel
  - Support structure made from 6061-T6 aluminum
- Stainless steel yield strength ≈ 200 Mpa
- Max stress ≈ 80 Mpa
  - Located at base of encoder shafts
- Factor of safety 2.49



#### **Encoder Mounts**

- Manufactured with waterjet
  - Parts cut out flat
  - Bent along perforations
  - Welded along the bends to repair stress cracks
- Encoder mount holes cut oblong
  - Belt tensioning and adjustment
  - Ease of belt removal








#### Laser Mounts

- Two laser measurement devices used for curb and obstacle detection
- Three possible mounting configurations
  - Top of trunk
  - Side-by-side
  - Stacked





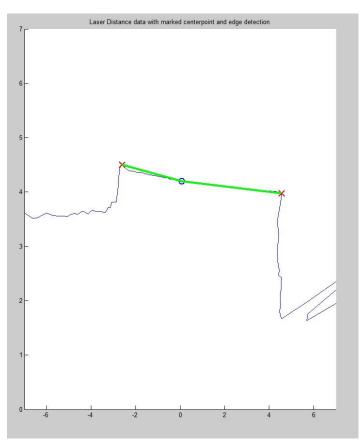
#### Laser Mounts

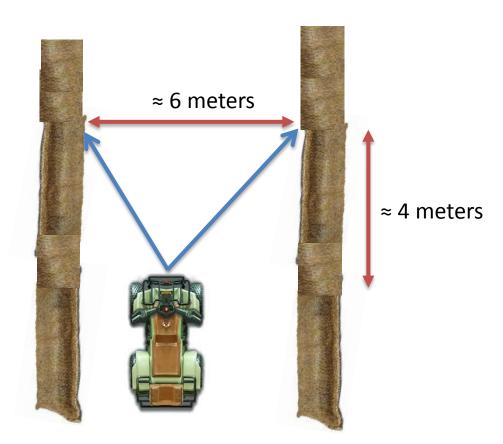
- Simulated 20 mph collision for FEA
- 6061 AL yield strength 241 Mpa
- Max stress 105 Mpa
  - Stress concentrations
    located at joints
- Factor of safety 2.303



#### Laser Mounts

- Final design
  - Modified with straight sections
  - Added angle adjustment



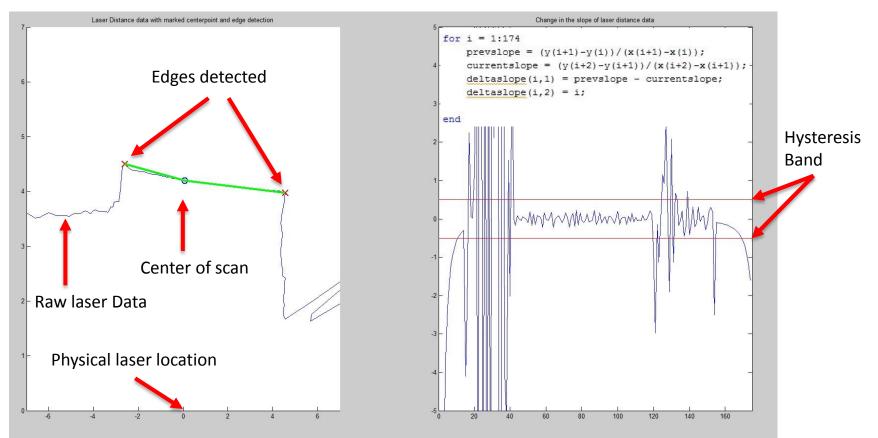






#### **Road Following**

• Raw laser data








Merrick Salisbury 15

#### **Road Following**

#### Laser data acquisition and manipulation





Merrick Salisbury 16

# IMU / GPS

- Inertial Measurement Unit
  - Outputs angular velocity and linear acceleration in x, y and z- directions
- Global Positioning System
  - Outputs ATV location in DMS (Degrees Minutes Seconds)



- Three possible mounting locations for each
- Final design included mounting both in trunk
  - Both sensors, router and antenna mounted on one plate inside trunk lid
- GPS and IMU used in waypoint navigation algorithm





#### • Basic Path Finding Algorithm

#### - Demonstration of system functionality

#### **Basic Path Finding Algorithm:**

Given a destination (x2,y2)

Record current position (x1,y1)

If  $x^2 > x^1$ 

Orient in Eastern direction

Else if x1>x2

Orient in Western direction

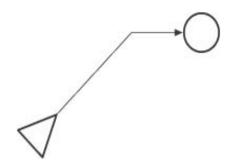
While ( current position != destination)

If x1 < x2

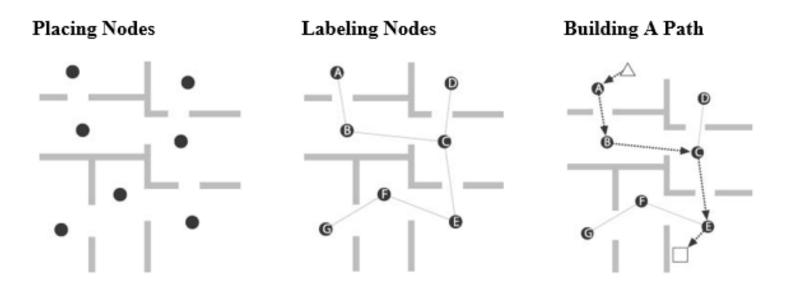
 $x1 \leftarrow x1^{++}$ ; using the encoders to determine the necessary trajectory to

else if x1 > x2

x1 ← x1 - -


If y1 < y2

y1**←** y1++

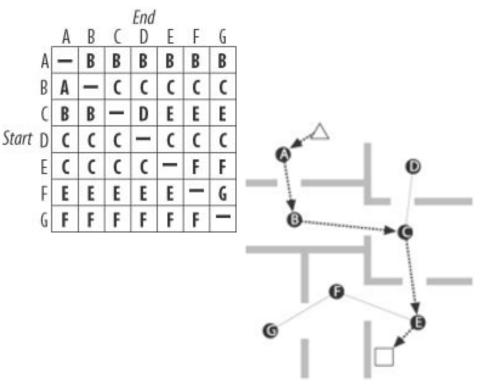

else if y1 > y2

y1 ← y1 - -



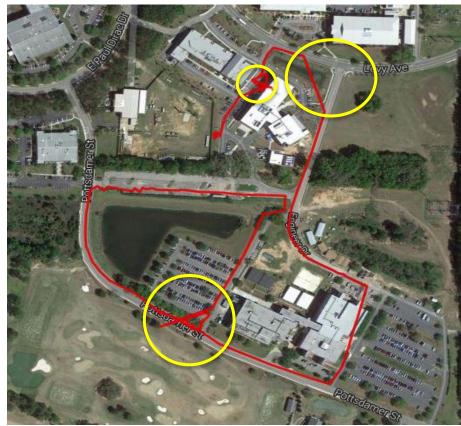


- Navigation using multiple waypoints(or nodes)
  - Extension of Basic Path Finding Algorithm
  - Uses node table to determine best path of navigation





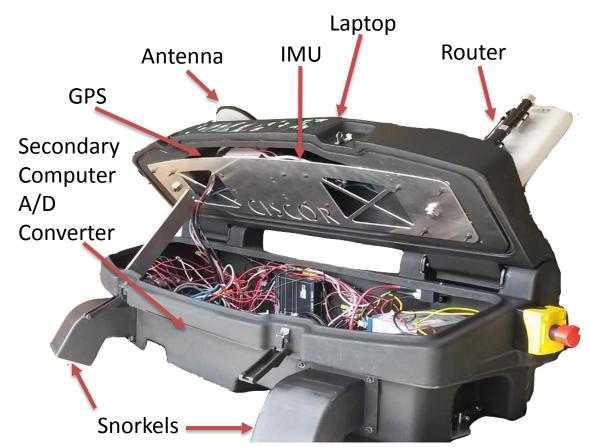

#### Functionality


- User places nodes on a map of the testing terrain
- Nodes will be labeled in order of nodes that are most accessible
- Node table is used to determine best path to destination

#### Node Table






- GPS data logging / testing
  - Installed in commercial vehicle
- Erroneous/missing data
  - Satellite signal lost
  - GPS updates at 1Hz
  - IMU fills in position data in between GPS signals





#### **Trunk Contents**

- Contents also include:
  - Batteries
  - Motor driver
  - Relays/switches
  - USB hub
  - Serial-to-USB converter





Jeremy Hammond 22

#### Computers

- Toughbook running Ubuntu OS mounted above trunk
  - ROS (Robot Operating System)
  - Sensor inputs
- Single Board Computer mounted inside trunk
  - Sensoray A/D Converter
  - Logs encoder outputs



 Electronic components inside trunk created heating issue



# **Cooling System**

- Previous issue with electronic components in the trunk overheating
- Three possible solutions
  - Natural Convection
  - Forced convection
  - Liquid Cooling
- Forced convection selected
- Weatherproofing needs to be maintained
  - 3D printed snorkels





#### Jeremy Hammond 24

# **Cooling System**


- Power dissipation needs
  ≈64.4W
- Analysis assumptions (worst case scenario)
  - Modeled as forced convection over flat plate
  - Outside air temp 90 °F
  - Isothermal internal surfaces
    130 °F
- Two 250 ft<sup>3</sup>/min fans





# Safety Considerations

- 4 safety cut-off switches located on all corners of vehicle
- Coded safety precautions
  - Top speed governor
  - Obstacle detection
  - Minimum turn radius
- Closed course testing



- Cooling fan blades exposed inside trunk
   Avoid running fans with trunk open
- Refer to operational manual for further safety procedures



#### **Cost Analysis**

- Cost analysis
  - Budget: 1500.00 USD
    - Raw materials: 617.99
    - Fasteners: 62.22
    - Misc. Electrical: 146.69
    - 3D printing: 300.00
    - Total: 1126.90
    - Remaining: 373.10





### Conclusion

- All sensors mounted and wired
- Steering motor mounted and tested
- Heating issue resolved
- Lasers, GPS, and IMU communicating
  - Accurate data requisition
- Finished V 1.0 of waypoint navigation and road following code
  - Needs further testing
- Set up of single board computer and A/D converter required
- Within budget



#### **Future Recommendations**

- Purchase and install RF cutoff switch for increased safety
- Create ROS packages for IMU, GPS, and encoders
- Install stereoscopic camera
- Replace both lasers with one vertically actuated laser
- Install skid plate to protect front encoders
- Revise autonomous algorithms



#### Testing





#### Fin

# Questions? Comments?

Special thanks to Nahush Kulkarni and Ryan David-Reyes



Omesh Dalchand 31

#### **Gantt Chart**

Plan

#### Team 10 Autonomous ATV (GOLIATH)

Start

date

End

date

|            | Percent     |   | r                                            |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|------------|-------------|---|----------------------------------------------|-----------------------------------------|--------|--------|--------|-----------------------------------------|--------|--------|--------|---------|---------|---------|---------|---------|----------------------------------------|---------|---------|
| e complete |             |   | Jan-14<br>Week 1 Week 2 Week 3 Week 4 Week 5 |                                         |        |        |        | Feb-14<br>Week 6 Week 7 Week 8 Week 9   |        |        |        | Mar-14  |         |         |         | Apr-14  |                                        |         |         |
|            | <b>95</b> % |   | Week 1                                       | Week 2                                  | Week 3 | Week 4 | Week 5 | Week 6                                  | Week / | Week 8 | Week 9 | Week 10 | Week 11 | Week 12 | Week 13 | Week 14 | Week 15                                | Week 16 | Week 1/ |
|            |             |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | - |                                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | - |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 75%         |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 75%         |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | 1 |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | 1 |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 95%         | 1 |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | 1 |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 25%         | 1 |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | 1 |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 20%         | - |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 30%         | - |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            |             | - |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | - |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |
|            | 100%        | - |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         | ////////////////////////////////////// |         |         |
|            | 100%        |   |                                              |                                         |        |        |        |                                         |        |        |        |         |         |         |         |         |                                        |         |         |

Due date

Dependency

Actual



Walkthrough

Open House

ACTIVITY

Part Ordering

Webpage Update

Midterm 1

Midterm 2 🔷 🌨

Finalize Algorithms Final Testing Manu/Reliab Report

-Midterm 1 Presentation 🔶 Finalize Part Installation **Final Part Testing** Autonomous Code Autonomous Code Testing

Midterm 2 Presentation 🗢 **Operational Manual** 

٠

٠

٠

٠

Part Manufacturing Initial Installation Initial Part Testing IMU communication/Testing **ROS/QNX** Communication

Updated Plan/Specs 🛛 🔶 Finalize Mechanical Designs **GPS** Communication/Testing Laser Communication/Testing

-